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Introduction

• Neutrino Oscillation Parameters [Circa 2006] 

• Tri-bimaximal neutrino mixing:

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25− 0.34), sin2 θ23 = 0.5 (0.38− 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],
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which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
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√
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∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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Tri-bimaximal Neutrino Mixing from A4
• even permutations of 4 objects (invariance group of tetrahedron)

• four in-equivalent representations: 

• successfully give rise to tri-bimaximal leptonic mixing:

★ lepton doublets ~ 

★ RH charged leptons:  

• generalization to quark sector:  

★ no CKM mixing -- lack of doublet representations

★ mass hierarchy -- need additional U(1) symmetry

1,  1’,  1’’, 3

3

1, 1’, 1’’



Group Theory of (d)T

• Double covering of A4

• in-equivalent representations: 

• generators: 

• product rules:

A4:  1,  1’,  1’’, 3
other:   2,  2’,  2’’

FIGURES

2
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C
3

FIG. 1. Geometrical illustration of the group T ′. The rotations C2 and C3 are defined in the
text.
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S2 = T 3 = (ST )3 = 1

S2 = R, T 3 = 1, (ST )3 = 1, R2 = 1

1

R=1:    1,  1’,  1’’, 3
R= -1:   2,  2’,  2’’

center of the group, generated by the elements E and , there are other abelian subgroups:

Z3, Z4 and Z6. In particular, there is a Z4 subgroup here denoted by GS, generated by the
element TST 2 and a Z3 subgroup here called GT , generated by the element T . As we will

see GS and GT are of great importance for the structure of our model. Realizations of S
and T for 2, 2′, 2′ ′ and 3 can be found in the appendix A and are taken from [13].

The multiplication rules of the representations are as follows:

1a ⊗ rb = rb ⊗ 1a = ra+b for r = 1, 2

1a ⊗ 3 = 3 ⊗ 1a = 3
2a ⊗ 2b = 3 ⊕ 1a+b

2a ⊗ 3 = 3 ⊗ 2a = 2 ⊕ 2′ ⊕ 2′′

3 ⊗ 3 = 3 ⊕ 3 ⊕ 1 ⊕ 1′ ⊕ 1′′

(6)

where a, b = 0,±1 and we have denoted 10 ≡ 1, 11 ≡ 1′, 1−1 ≡ 1′′ and similarly for
the doublet representations. On the right-hand-side the sum a + b is modulo 3. The

Clebsch-Gordan coefficients for the decomposition of product representations are shown
in the appendix A and were already calculated in [13]. Further synonyms of T ′ are Type
24/13 [17] and SL2(F3) [15].

3 Outline of the model

In this section we introduce our model and we illustrate its main features. We choose the
model to be supersymmetric, which would help us when discussing the vacuum selection
and the symmetry breaking pattern of T ′. The model is required to be invariant under a

flavour symmetry group F = T ′ ⊗ Z3 ⊗ U(1)FN . The group factor T ′ is the one responsi-
ble for the TB lepton mixing. The group T ′ is unable to produce all the necessary mass

suppressions for the fermions of the first and second generations. These suppressions orig-
inate in part from a spontaneously broken U(1)FN , according to the original FN proposal.
Finally, the Z3 factor helps in keeping separate the contributions to neutrino masses and

to charged fermion masses, and it is an important ingredient in the vacuum alignment
analysis. The fields of the model, together with their transformation properties under the

flavour group, are listed in Table 2.

Field l ec µc τ c Dq Dc
u Dc

d q3 tc bc hu,d ϕT ϕS ξ, ξ̃ η ξ′′

T ′ 3 1 1′′ 1′ 2′′ 2′′ 2′′ 1 1 1 1 3 3 1 2′ 1′′

Z3 ω ω2 ω2 ω2 ω ω2 ω2 ω ω2 ω2 1 1 ω ω 1 1

U(1)FN 0 2n n 0 0 n 0 0 0 0 0 0 0 0 0 0

Table 2: The transformation rules of the fields under the symmetries associated to the groups T ′, Z3 and
U(1)FN . We denote Dq = (q1, q2)t where q1 = (u, d)t and q2 = (c, s)t are the electroweak SU(2)-doublets of
the first two generations, Dc

u = (uc, cc)t and Dc
d = (dc, sc)t. Dq, Dc

u and Dc
d are doublets of T ′. q3 = (t, b)t

is the electroweak SU(2)-doublet of the third generation. q3, tc and bc are all singlets under T ′.
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ble for the TB lepton mixing. The group T ′ is unable to produce all the necessary mass

suppressions for the fermions of the first and second generations. These suppressions orig-
inate in part from a spontaneously broken U(1)FN , according to the original FN proposal.
Finally, the Z3 factor helps in keeping separate the contributions to neutrino masses and

to charged fermion masses, and it is an important ingredient in the vacuum alignment
analysis. The fields of the model, together with their transformation properties under the

flavour group, are listed in Table 2.

Field l ec µc τ c Dq Dc
u Dc

d q3 tc bc hu,d ϕT ϕS ξ, ξ̃ η ξ′′

T ′ 3 1 1′′ 1′ 2′′ 2′′ 2′′ 1 1 1 1 3 3 1 2′ 1′′

Z3 ω ω2 ω2 ω2 ω ω2 ω2 ω ω2 ω2 1 1 ω ω 1 1

U(1)FN 0 2n n 0 0 n 0 0 0 0 0 0 0 0 0 0

Table 2: The transformation rules of the fields under the symmetries associated to the groups T ′, Z3 and
U(1)FN . We denote Dq = (q1, q2)t where q1 = (u, d)t and q2 = (c, s)t are the electroweak SU(2)-doublets of
the first two generations, Dc

u = (uc, cc)t and Dc
d = (dc, sc)t. Dq, Dc

u and Dc
d are doublets of T ′. q3 = (t, b)t

is the electroweak SU(2)-doublet of the third generation. q3, tc and bc are all singlets under T ′.

center of the group, generated by the elements E and , there are other abelian subgroups:

Z3, Z4 and Z6. In particular, there is a Z4 subgroup here denoted by GS, generated by the
element TST 2 and a Z3 subgroup here called GT , generated by the element T . As we will
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3 ⊗ 3 = 3 ⊕ 3 ⊕ 1 ⊕ 1′ ⊕ 1′′

(6)

where a, b = 0,±1 and we have denoted 10 ≡ 1, 11 ≡ 1′, 1−1 ≡ 1′′ and similarly for
the doublet representations. On the right-hand-side the sum a + b is modulo 3. The

Clebsch-Gordan coefficients for the decomposition of product representations are shown
in the appendix A and were already calculated in [13]. Further synonyms of T ′ are Type
24/13 [17] and SL2(F3) [15].

3 Outline of the model

In this section we introduce our model and we illustrate its main features. We choose the
model to be supersymmetric, which would help us when discussing the vacuum selection
and the symmetry breaking pattern of T ′. The model is required to be invariant under a

flavour symmetry group F = T ′ ⊗ Z3 ⊗ U(1)FN . The group factor T ′ is the one responsi-
ble for the TB lepton mixing. The group T ′ is unable to produce all the necessary mass

suppressions for the fermions of the first and second generations. These suppressions orig-
inate in part from a spontaneously broken U(1)FN , according to the original FN proposal.
Finally, the Z3 factor helps in keeping separate the contributions to neutrino masses and

to charged fermion masses, and it is an important ingredient in the vacuum alignment
analysis. The fields of the model, together with their transformation properties under the

flavour group, are listed in Table 2.

Field l ec µc τ c Dq Dc
u Dc

d q3 tc bc hu,d ϕT ϕS ξ, ξ̃ η ξ′′

T ′ 3 1 1′′ 1′ 2′′ 2′′ 2′′ 1 1 1 1 3 3 1 2′ 1′′

Z3 ω ω2 ω2 ω2 ω ω2 ω2 ω ω2 ω2 1 1 ω ω 1 1

U(1)FN 0 2n n 0 0 n 0 0 0 0 0 0 0 0 0 0

Table 2: The transformation rules of the fields under the symmetries associated to the groups T ′, Z3 and
U(1)FN . We denote Dq = (q1, q2)t where q1 = (u, d)t and q2 = (c, s)t are the electroweak SU(2)-doublets of
the first two generations, Dc

u = (uc, cc)t and Dc
d = (dc, sc)t. Dq, Dc

u and Dc
d are doublets of T ′. q3 = (t, b)t

is the electroweak SU(2)-doublet of the third generation. q3, tc and bc are all singlets under T ′.

2 +1 assignments for quarks



The Model
• Symmetry: SU(5) x (d)T

• Particle Content

• additional               symmetry:   

★ predictive model: number of operators as small as possible

★ vacuum misalignment: neutrino sector vs charged fermion sector

T3 Ta F H5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z ′
12 ω ω4 ω8 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Charge assignments. Here the parameter ω = eiπ/6.

the quark sector while maintaining near TBM pattern. However, in order to explain the mass

hierarchy, the model has to resort to an additional U(1) symmetry. Furthermore, a large number

of operators are present in this model, making it less predictive. Here we consider an SU(5) model

combined with (d)T symmetry, which successfully accommodates the mass hierarchy as well as the

mixing matrices in both quark and lepton sectors. With an additional Z12 × Z ′
12 symmetry, only

“good” operators are allowed up to at least dimension seven, making the model very predictive.

In addition, the mass hierarchy is naturally explained without having hierarchy in the vacuum

expectation values (VEV’s) of the scalar fields, the reason being that the mass operators for the

lighter generation are allowed to appear only at higher order compared to those for the heavy

generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, uc, ec)L and a 5(dc, ')L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand, to

obtain realistic quark sector, the third generation of the 10-dim representation transforms as a sin-

glet, so that the top quark mass is allowed by the family symmetry, while the first and the second

generations form a doublet of (d)T . These 10-dim representations are denoted by, respectively, T3

and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5 as well as a

45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We have summarized these

quantum number assignment in Table I.

3

T3 Ta F H5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z ′
12 ω ω4 ω8 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Charge assignments. Here the parameter ω = eiπ/6.

the quark sector while maintaining near TBM pattern. However, in order to explain the mass

hierarchy, the model has to resort to an additional U(1) symmetry. Furthermore, a large number

of operators are present in this model, making it less predictive. Here we consider an SU(5) model

combined with (d)T symmetry, which successfully accommodates the mass hierarchy as well as the

mixing matrices in both quark and lepton sectors. With an additional Z12 × Z ′
12 symmetry, only

“good” operators are allowed up to at least dimension seven, making the model very predictive.

In addition, the mass hierarchy is naturally explained without having hierarchy in the vacuum

expectation values (VEV’s) of the scalar fields, the reason being that the mass operators for the

lighter generation are allowed to appear only at higher order compared to those for the heavy

generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, uc, ec)L and a 5(dc, ')L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand, to

obtain realistic quark sector, the third generation of the 10-dim representation transforms as a sin-

glet, so that the top quark mass is allowed by the family symmetry, while the first and the second

generations form a doublet of (d)T . These 10-dim representations are denoted by, respectively, T3

and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5 as well as a

45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We have summarized these

quantum number assignment in Table I.

3

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

T3 Ta F H5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z ′
12 ω ω4 ω8 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Charge assignments. Here the parameter ω = eiπ/6.

the quark sector while maintaining near TBM pattern. However, in order to explain the mass

hierarchy, the model has to resort to an additional U(1) symmetry. Furthermore, a large number

of operators are present in this model, making it less predictive. Here we consider an SU(5) model

combined with (d)T symmetry, which successfully accommodates the mass hierarchy as well as the

mixing matrices in both quark and lepton sectors. With an additional Z12 × Z ′
12 symmetry, only

“good” operators are allowed up to at least dimension seven, making the model very predictive.

In addition, the mass hierarchy is naturally explained without having hierarchy in the vacuum

expectation values (VEV’s) of the scalar fields, the reason being that the mass operators for the

lighter generation are allowed to appear only at higher order compared to those for the heavy

generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, uc, ec)L and a 5(dc, ')L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand, to

obtain realistic quark sector, the third generation of the 10-dim representation transforms as a sin-

glet, so that the top quark mass is allowed by the family symmetry, while the first and the second

generations form a doublet of (d)T . These 10-dim representations are denoted by, respectively, T3

and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5 as well as a

45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We have summarized these

quantum number assignment in Table I.

3

T3 Ta F H5 H ′
5

∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z ′
12 ω ω4 ω8 ω10 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Charge assignments. Here the parameter ω = eiπ/6.

in [9] generalizes the (d)T to the quark sector while maintaining near TBM pattern. However,

in order to explain the mass hierarchy, the model has to resort to an additional U(1) symmetry.

Furthermore, a large number of operators are present in this model, making it less predictive. Here

we consider an SU(5) model combined with (d)T symmetry, which successfully accommodates the

mass hierarchy as well as the mixing matrices in both quark and lepton sectors. With an additional

Z12 × Z ′
12 symmetry, only “good” operators are allowed up to at least dimension seven, making

the model very predictive. In addition, the mass hierarchy is naturally explained without having

hierarchy in the vacuum expectation values (VEV’s) of the scalar fields, the reason being that the

mass operators for the lighter generation are allowed to appear only at higher order compared to

those for the heavy generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, uc, ec)L and a 5(dc, ')L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand,

to obtain realistic quark sector, the third generation of the 10-dim representation transforms as a

singlet, so that the top quark mass is allowed by the family symmetry, while the first and the sec-

ond generations form a doublet of (d)T . These 10-dim representations are denoted by, respectively,

T3 and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5, a 5-dim

Higgs, H ′
5
, as well as a 45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We

have summarized these quantum number assignment in Table I. It is to be noted that H5 and H ′
5

are not conjugate of each other as they have different Z12 and Z ′
12 charges.

3

- only top mass allowed at renormalizable level

- need to break (d)T to generate all other fermion masses 



The Model
H5T3Ta ψ′, ψ

ψφ, ψφ′, ψ′φ, ψ′φ′, ψ′ζ, ψ′N, ψN

ψ3, ψψ′2, ψφ2, ψφ′2, ψφζ, ψφ′ζ, ψ′3, ψ′ψ2, ψ′φ2, ψ′φ′2, ψ′φζ, ψ′φ′ζ,

ψφN,ψφ′N, ψ′φN,ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψξφ, ψξφ′, ψξζ, ψ′ξ2 ψ′ξφ, ψ′ξφ′, ψ′ξζ, ψξN, ψ′ξN, ψ′η, ψφη, ψφ′η, ψξη,

ψ′φη, ψ′φ′η, ψ′ξη, ψη, ψφη, ψφ′η, ψ′φη, ψ′φ′η, ψφη, ψφ′η, ψ′φη, ψ′φ′η

H5TaTa φ, φ′

φ′2, ψ2, ψ′2, φφ′, ψψ′

φ3, φ2ζ, φζ2, φ′2ζ, φ′ζ2,φφ′ζ, φφ′2, φ′φ2, φN2, φ′N2, φ′2N, φφ′N, φNζ, φ′Nζ

ξ, ξ2, ξζ, ξN, ξη, ξ2, ξφ, ξφ′, ξ3, ξ2ζ, ξ2η, ξ2ζ, ξNζ, ξNη, ξζη, ξφ2, ξφ′2, ξφφ′,

ξ2φ, ξ2φ′, ξφN, ξφη, ξφζ, ξφ′N, ξφ′η, ξφ′ζ, φ2η, φη2, φηN, φηζ, φ′η2, φ′ηN,

φ′ηζ,φη, φ′η, ξN2, ξη2, ξζ2

H ′
5
FT3 φ, φ′

ψ2, φ2, φ′2, φ′φ, ψ′2, ψψ′, φ′ζ, φ′N, φN

φ3, φ′3, φ2φ′, φφ′2, φζ2, φ′ζ2,φψ2, φ′ψ′2, ζψ2, ζψ′2, φ′ψ2, φψ2,

φN2, φ′N2, φNζ, φ′Nζ, Nψ2, ζψ2, ζψψ′, Nψψ′

ξ, ξ2, ξN, ξζ, ξη, ξφ, ξφ′, ξ3, ξ2N, ξ2ζ, ξ2η, ξ2φ, ξ2φ′, ξφ2,

ξφ′2, ξφφ′, ξφN, ξφζ, ξφη, ξφ′N, ξφ′ζ, ξφ′η, φ′η, φη2, φηN, φηζ, φ′η2, φ′ηN, φ′ηζ, ηψ2,

ηψ′2, φη, φηN, φηζ, φ′η2, φ′ηN, ηψψ′

H ′
5
FTa ψ, ψ′

ψφ′, ψ′φ, ψ′φ′, φψ

ψφ2, ψφζ, ψ′φζ, ψφ′2, ψ′φ′2, ψφφ′, ψ′φφ′, ψφ′ζ, ψ′φ′ζ, ψφN, ψ′φN, ψφ′N, ψ′φ′N

ψξ, ψ′ξ, ψξ2, ψ′ξ2, ψξφ, ψξφ′, ψ′ξφ, ψ′ξφ′,

ψξN, ψξη,ψξζ, ψ′ξζ, ψ′ξη, ψ′ξN, ψφη, ψ′φη, ψ′φ′η, ψφ′η, ψ′φ′η, ψφη, ψ′φη

TABLE II: Additional operators that are allowed by the SU(5) × (d)T symmetry up to dim-7. For each

operator shown above, there is a corresponding one with H5, H ′
5
↔ ∆45.

are generated by the same operator, H ′
5
FT3φζ, we obtain the successful b− τ unification relation.

Upon the breaking of (d)T → GT, the operator ∆45FTaφN contributes to the (22) element in Md, e,

and thus gives rise to ms and mµ. As this operator involves ∆45, the GJ relation for the second

family, mµ % 3ms is obtained. If no further symmetry breaking takes place, the first generation

masses, md and me vanishes. At this stage, the diagonalization mass matrix for the charged leptons

(and down type quark) is identity, and hence the the tri-bimaximal mixing matrix is exact.

To obtain the correct mass relation for the first generation, it inevitably calls for flavor mixing

6



The Model
• Symmetry: SU(5) x (d)T

• Particle Content

• additional               symmetry:   

★ predictive model: only 9 operators allowed up to at least dim-7

★ vacuum misalignment: neutrino sector vs charged fermion sector

★ mass hierarchy: lighter generation masses allowed only at higher dim

T3 Ta F H5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z ′
12 ω ω4 ω8 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Charge assignments. Here the parameter ω = eiπ/6.

the quark sector while maintaining near TBM pattern. However, in order to explain the mass

hierarchy, the model has to resort to an additional U(1) symmetry. Furthermore, a large number

of operators are present in this model, making it less predictive. Here we consider an SU(5) model

combined with (d)T symmetry, which successfully accommodates the mass hierarchy as well as the

mixing matrices in both quark and lepton sectors. With an additional Z12 × Z ′
12 symmetry, only

“good” operators are allowed up to at least dimension seven, making the model very predictive.

In addition, the mass hierarchy is naturally explained without having hierarchy in the vacuum

expectation values (VEV’s) of the scalar fields, the reason being that the mass operators for the

lighter generation are allowed to appear only at higher order compared to those for the heavy

generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, uc, ec)L and a 5(dc, ')L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand, to

obtain realistic quark sector, the third generation of the 10-dim representation transforms as a sin-

glet, so that the top quark mass is allowed by the family symmetry, while the first and the second

generations form a doublet of (d)T . These 10-dim representations are denoted by, respectively, T3

and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5 as well as a

45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We have summarized these

quantum number assignment in Table I.

3

T3 Ta F H5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z ′
12 ω ω4 ω8 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Charge assignments. Here the parameter ω = eiπ/6.

the quark sector while maintaining near TBM pattern. However, in order to explain the mass

hierarchy, the model has to resort to an additional U(1) symmetry. Furthermore, a large number

of operators are present in this model, making it less predictive. Here we consider an SU(5) model

combined with (d)T symmetry, which successfully accommodates the mass hierarchy as well as the

mixing matrices in both quark and lepton sectors. With an additional Z12 × Z ′
12 symmetry, only

“good” operators are allowed up to at least dimension seven, making the model very predictive.

In addition, the mass hierarchy is naturally explained without having hierarchy in the vacuum

expectation values (VEV’s) of the scalar fields, the reason being that the mass operators for the

lighter generation are allowed to appear only at higher order compared to those for the heavy

generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, uc, ec)L and a 5(dc, ')L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand, to

obtain realistic quark sector, the third generation of the 10-dim representation transforms as a sin-

glet, so that the top quark mass is allowed by the family symmetry, while the first and the second

generations form a doublet of (d)T . These 10-dim representations are denoted by, respectively, T3

and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5 as well as a

45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We have summarized these

quantum number assignment in Table I.

3

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

T3 Ta F H5 ∆45 φ φ′ ψ ψ′ ζ N ξ η

SU(5) 10 10 5 5 45 1 1 1 1 1 1 1 1
(d)T 1 2 3 1 1′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 ω5 ω2 ω5 ω2 ω5 ω3 ω2 ω6 ω9 ω9 ω3 ω10 ω10

Z ′
12 ω ω4 ω8 ω10 ω3 ω3 ω6 ω7 ω8 ω2 ω11 1 1

TABLE I: Charge assignments. Here the parameter ω = eiπ/6.

the quark sector while maintaining near TBM pattern. However, in order to explain the mass

hierarchy, the model has to resort to an additional U(1) symmetry. Furthermore, a large number

of operators are present in this model, making it less predictive. Here we consider an SU(5) model

combined with (d)T symmetry, which successfully accommodates the mass hierarchy as well as the

mixing matrices in both quark and lepton sectors. With an additional Z12 × Z ′
12 symmetry, only

“good” operators are allowed up to at least dimension seven, making the model very predictive.

In addition, the mass hierarchy is naturally explained without having hierarchy in the vacuum

expectation values (VEV’s) of the scalar fields, the reason being that the mass operators for the

lighter generation are allowed to appear only at higher order compared to those for the heavy

generation. Thus we have a dynamical explanation for the mass hierarchy.

II. THE MODEL

In SU(5), all matter fields are unified into a 10(Q, uc, ec)L and a 5(dc, ')L dimensional repre-

sentations. The three generations of 5 are assigned into a triplet of (d)T , in order to generate the

tri-bimaximal mixing pattern in the lepton sector, and it is denoted by F . On the other hand, to

obtain realistic quark sector, the third generation of the 10-dim representation transforms as a sin-

glet, so that the top quark mass is allowed by the family symmetry, while the first and the second

generations form a doublet of (d)T . These 10-dim representations are denoted by, respectively, T3

and Ta, where a = 1, 2. The Yukawa interactions are mediated by a 5-dim Higgs, H5 as well as a

45-dim Higgs, ∆45, which is required for the Georgi-Jarlskog relations. We have summarized these

quantum number assignment in Table I.
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The Model

• Abelian subgroups of  (d)T : 

• (d)T breaking:

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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UMNS = V †
e,LUTBM =




1 −θc/3 ∗

θc/3 1 ∗
∗ ∗ 1









√
2/3 1/

√
3 0

−
√

1/6 1/
√

3 −1/
√

2
−

√
1/6 1/

√
3 1/

√
2





(1)

UMNS =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1





S2 = T 3 = (ST )3 = 1

S2 = R, T 3 = 1, (ST )3 = 1, R2 = 1

Z3 : GT

Z4 : GTST2

1

8 Appendix A

The matrices S and T representing the generator depend on the representations of the

group:
1 S = 1 T = 1

1′ S = 1 T = ω
1′′ S = 1 T = ω2

2 S = A1 T = ωA2

2′ S = A1 T = ω2A2

2′′ S = A1 T = A2

3 S =
1

3





−1 2ω 2ω2

2ω2 −1 2ω

2ω 2ω2 −1



 T =





1 0 0
0 ω 0

0 0 ω2





where we have used the matrices

A1 = −
1√
3

(

i
√

2eiπ/12

−
√

2e−iπ/12 −i

)

A2 =

(

ω 0

0 1

)

.

We now report the multiplication rules between the various representations. In the
following we use αı to indicate the elements of the first representation of the product and

βı to indicate those of the second representation. Moreover a, b = 0,±1 and we denote
10 ≡ 1, 11 ≡ 1′, 1−1 ≡ 1′′ and similarly for the doublet representations. On the right-hand

side the sum a + b is modulo 3.
We start with all the multiplication rules which include the 1-dimensional representa-

tions:
1 ⊗ Rep = Rep ⊗ 1 = Rep with Rep whatever representation

1a ⊗ 1b = 1b ⊗ 1a = 1a+b ≡ αβ

1a ⊗ 2b = 2b ⊗ 1a = 2a+b ≡
(

αβ1

αβ2

)

1′ ⊗ 3 = 3 =





αβ3

αβ1

αβ2



 1′′ ⊗ 3 = 3 =





αβ2

αβ3

αβ1
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S2 = T 3 = (ST )3 = 1
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Z3 : GT
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u = −1.87× 10−2, ξ0 = 1.15× 10−2

ω = e2πi/3
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The Model

• Lagrangian:  only 9 operators allowed!!

The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH
′
5FT3φζ +

1
Λ3

[
ys∆45FTaφψN + ydH

′
5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,
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〈
ξ
〉

= ξ0Λ
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1

1




,

〈
φ′〉 = φ′
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1

1

1




, (7)
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〈
φ
〉
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0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4



Neutrino Sector

• Operators:

• Symmetry breaking:

• Resulting mass matrix:

under which the transformation properties of various fields are summarized in Table I, the above

Lagrangian is the most general one. Here the operators that couple to H5T3T3 are not shown in the

above Lagrangian as their contributions can be absorbed into a redefinition of the coupling constant

yt. In addition, we neglect the operator H5FT3ζψψ′ in LTF since its contribution is negligible.

Also not shown are those that contribute to LFF which can be absorbed into a redefinition of the

parameter u and φ0. Note that in principle, viable phenomenology may still be obtained when

more operators are allowed, The additional discrete symmetry that is needed in that case would be

smaller. Nevertheless, more Yukawa coupling constants will be present and the model would not

be as predictive. The Z12 × Z ′
12 symmetry also forbids proton and other nucleon decay operators

to very high orders; it is likely this symmetry might be linked to orbifold compactification in extra

dimensions. Note that, the Z12 × Z ′
12 symmetry also separates the neutrino and charged fermion

sectors, so that the neutrinos only couple to the GTST2 breaking sector. Furthermore, it allows the

45-dim Higgs, ∆45, to appear only in the operator shown above, and thus is crucial for obtaining

the Georgi-Jarlskog (GJ) relations.

The interactions in Lν give the following neutrino mass matrix [3], which is invariant under

GTST2 [9],

Mν =
λv2

Mx





2ξ0 + u −ξ0 −ξ0

−ξ0 2ξ0 u− ξ0

−ξ0 u− ξ0 2ξ0




, (13)

and we have absorbed the Yukawa coupling constants by rescaling the VEV’s. This mass matrix

Mν is form diagonalizable, i.e. the orthogonal matrix that diagonzlizes it does not depend on the

eigenvalues. Its diagonal form is,

V T
ν MνVν = diag(u + 3ξ0, u, −u + 3ξ0)

v2
u

Mx
, (14)

where the diagonalization matrix Vν is the tri-bimaximal mixing matrix, Vν = UTBM given in Eq. 2.

This tri-bimaximal mixing pattern and the mass eigenvalues in the neutrino sector are thus the

same as in all previous analyses in models based on A4 and (d)T , which has been shown to be

consistent with experimental data.

The down type quark and charged lepton masses are generated by LTF . Because the renormal-

izable operator H5FT3 is forbidden by the (d)T symmetry, the generation of b quark mass requires

the breaking of (d)T , which naturally explains the hierarchy between mt and mb. The b quark mass,

and thus the τ mass, is generated upon the breaking of (d)T → GT and (d)T → GS. As mb and mτ

are generated by the same operator, H5FT3φζ, we obtain the successful b− τ unification relation.
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where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ





1

1

1




,

〈
φ′〉 = φ′

0Λ





1

1

1




, (7)

(d)T −→ GT :
〈
φ
〉

= φ0Λ





1

0

0




,

〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2σ

limits for the mixing parameters [1],

sin2 θ12 = 0.30 (0.25− 0.34), sin2 θ23 = 0.5 (0.38− 0.64), sin2 θ13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =
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√
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, (2)

which predicts sin2 θatm, TBM = 1/2 and sin θ13,TBM = 0. In addition, it predicts sin2 θ!,TBM = 1/3

for the solar mixing angle. Even though the predicted θ!,TBM is currently still allowed by the

experimental data at 2σ, as it is very close to the upper bound at the 2σ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1′, 1′′ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a different finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2′, and 2′′, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⊕ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ∼ 10−3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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Up Quark Sector

• Operators:

• top mass: allowed by (d)T

• lighter family acquire masses thru operators with higher dimensionality

➡ dynamical origin of mass hierarchy

• symmetry breaking:

• Mass matrix:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =
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0 ψ0N0 0

φ0ψ′
0 φ0ψ′
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where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈
ξ
〉

= ξ0Λ
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〈
φ′〉 = φ′

0Λ





1

1
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, (7)
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〈
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〉
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0
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〈
ψ

〉
= ψ0Λ



 1

0



 (8)

(d)T −→ nothing :
〈
ψ′〉 = ψ′

0Λ



 1

1



 (9)

(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.
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12 symmetry,
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Down Quark Sector
• operators:

• generation of b-quark mass: breaking of  (d)T : dynamical origin for 
hierarchy between mb and mt 

• lighter family acquire masses thru operators with higher dimensionality

➡ dynamical origin of mass hierarchy

• consider 2nd, 3rd families only:   TBM exact

• Georgi-Jarlskog relations:

• symmetry breaking:

• mass matrix:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

7
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The Lagrangian of the model is given as follows,
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
Λ2

ytsH5T3Taψζ +
1
Λ2

ycH5TaTaφ
2 +

1
Λ3

yuH5TaTaφ
′3 (4)

LTF =
1
Λ2

ybH5FT3φζ +
1
Λ3

[
ys∆45FTaφψN + ydH5FTaφ

2ψ′
]

(5)

LFF =
1

MxΛ

[
λ1H5H5F F ξ + λ2H5H5F Fη

]
, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,
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(d)T −→ GS :
〈
ζ
〉

= ζ0,
〈
N

〉
= N0 (10)

(d)T − invariant :
〈
η
〉

= u (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],

TST 2 =
1
3





−1 2 2

2 −1 2

2 2 −1




, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.
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12 symmetry,
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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corrections to TBM



Quark and Lepton Mixing Matrices

• CKM mixing matrix:

• MNS matrix:

The correction to the θ12 due to mixing in the charged lepton sector can account for the difference

between sin2 θ2
12 = 1/3 in the tri-bimaximal mixing matrix and the experimentally observed best

fit value, sin2 θ12 = 0.3. The GJ relation for the first family, md ! 3me, is obtained due to the

operator H5FTaφ2ψ′, which further breaks the (d)T symmetry down to nothing. The mass matrices

for the down type quarks and charged leptons are thus given by,

Md =





0 (1 + i)φ0ψ′
0 0

−(1− i)φ0ψ′
0 ψ0N0 0

φ0ψ′
0 φ0ψ′

0 ζ0




ybvdφ0, (15)

Me =





0 −(1− i)φ0ψ′
0 φ0ψ′

0

(1 + i)φ0ψ′
0 −3ψ0N0 φ0ψ′

0

0 0 ζ0




ybvdφ0 (16)

where we have absorbed the coupling constants yd and ys by re-scaling the VEV’s, φ0 and ψ′
0.

Since the off diagonal elements in these mass matrices involve two VEV’s, φ0ψ′
0, they are naturally

smaller compared to ψ0, assuming the VEV’s are naturally of the same order of magnitude. Besides

explaining the mass hierarchy, it gives rise to the correct GJ relations in the first and the second

families. Furthermore, as b is small, the corrections to θ12 and θ13 in the neutrino sector are under

control. Note that there is no correction to Md, e given above at least to the order of dim-7.

The up quark masses are generated by the following Yukawa interactions, LTT . When the
(d)T symmetry is exact, the only operator that is allowed is H5T3T3, thus only top quark mass is

generated, which naturally explains why the top mass is much larger than all other fermion masses.

When
〈
ψ

〉
breaks (d)T down to GT, the mass mc and Vtd is generated by the operators, H5T3Taφζ

and H5TaTaφ2. The breaking of (d)T → GTST2 gives rise the up quark mass through the operator

H5TaTbφ′3. These interactions give rise to the following mass matrix for the up type quarks,

Mu =





iφ′3
0

1−i
2 φ′3

0 0
1−i
2 φ′3

0 φ′3
0 + (1− i

2)φ2
0 y′ψ0ζ0

0 y′ψ0ζ0 1




ytvu , (17)

where we have absorbed yc/yt and yu/yt by re-scaling the VEV’s of ψ0 and φ′
0, and y′ = yts/

√
ycyt.

The mixing angel θu
12 from the up type quark mass matrix given in Eq. 17 is related to mc and

mu as θu
12 !

√
mu/mc, while the mixing angle θd

12 arising from the down quark mass matrix Md

given in Eq. 15 is related to the ratio of md and ms as θd
12 !

√
md/ms, to the leading order. The

Cabibbo angle, θc, is therefore given by θc !
∣∣√md/ms − eiα

√
mu/mc

∣∣ ∼
√

md/ms, where the

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo
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Vcb
Vub

angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This
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and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,
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These predictions are consistent with the observed values given in Eq. 20 and are in good agreement

with the GJ relations. The overall scale factor is ybφ0ζ0 ! mb/mt ! (0.011) at the GUT scale,

assuming the top Yukawa coupling is 1. For the up type quarks, the mass matrix can be written

as,

Mu =





ia 1−i
2 a 0

1−i
2 a a + h k

0 k 1




ytvu , (24)

and with the choice of k ≡ y′ψ0ζ0 = −0.032, h ≡ ψ2
0 = 0.0053 and g ≡ φ′30 = −2.25 × 10−5, the

ratio among the three up type quarks is given by,

mu : mc : mt = 0.0000252 : 0.005 : 1.00 , (25)

which is consistent with the observed values shown in Eq. 20. The absolute values of the CKM

matrix elements are given by,

|VCKM| =





0.976 0.217 0.00778

0.216 0.975 0.040

0.015 0.0378 0.999




. (26)

Except for the element Vub, which is slightly higher than the current experimental upper bound

of ∼ 0.005, all other elements are in good agreement with current data. This discrepancy can be

alleviated by allowing additional operators to be present in the model. It can also be improved by

having complex parameters, with which realistic CP violation measures in the quark sector could

also arise. We leave these possibilities for further investigation. The diagonalization matrix for the

charged leptons is,

Ve,L =





−0.996 + 0.052i −0.0516 + 0.0581i (6.35− 6.36i)× 10−5

0.0578 + 0.0520i −0.995 + 0.0581i 0.00108− 0.0000636i

7.24× 10−6 0.00109 0.999




. (27)

This leads to small deviation to the tri-bimaximal mixing pattern as discussed above, leading to

the following leptonic mixing matrix,

|UMNS| = |V †
e,LUTBM| =





0.838 0.545 0.0550

0.364 0.608 0.706

0.409 0.578 0.706




, (28)

which gives sin2 θatm = 1, tan2 θ# = 0.424 and |Ue3| = 0.055. Note that the total number of

parameters in our model is seven in the charged fermion sectors and two in the neutrino sector.

9

These predictions are consistent with the observed values given in Eq. 20 and are in good agreement

with the GJ relations. The overall scale factor is ybφ0ζ0 ! mb/mt ! (0.011) at the GUT scale,

assuming the top Yukawa coupling is 1. For the up type quarks, the mass matrix can be written

as,

Mu =





ia 1−i
2 a 0

1−i
2 a a + h k

0 k 1




ytvu , (24)

and with the choice of k ≡ y′ψ0ζ0 = −0.032, h ≡ ψ2
0 = 0.0053 and g ≡ φ′30 = −2.25 × 10−5, the

ratio among the three up type quarks is given by,

mu : mc : mt = 0.0000252 : 0.005 : 1.00 , (25)

which is consistent with the observed values shown in Eq. 20. The absolute values of the CKM

matrix elements are given by,

|VCKM| =





0.976 0.217 0.00778

0.216 0.975 0.040

0.015 0.0378 0.999




. (26)

Except for the element Vub, which is slightly higher than the current experimental upper bound

of ∼ 0.005, all other elements are in good agreement with current data. This discrepancy can be

alleviated by allowing additional operators to be present in the model. It can also be improved by

having complex parameters, with which realistic CP violation measures in the quark sector could

also arise. We leave these possibilities for further investigation. The diagonalization matrix for the

charged leptons is,

Ve,L =





−0.996 + 0.052i −0.0516 + 0.0581i (6.35− 6.36i)× 10−5

0.0578 + 0.0520i −0.995 + 0.0581i 0.00108− 0.0000636i

7.24× 10−6 0.00109 0.999




. (27)

This leads to small deviation to the tri-bimaximal mixing pattern as discussed above, leading to

the following leptonic mixing matrix,

|UMNS| = |V †
e,LUTBM| =





0.838 0.545 0.0550

0.364 0.608 0.706

0.409 0.578 0.706




, (28)

which gives sin2 θatm = 1, tan2 θ# = 0.424 and |Ue3| = 0.055. Note that the total number of

parameters in our model is seven in the charged fermion sectors and two in the neutrino sector.

9

angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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These predictions are consistent with the observed values given in Eq. 20 and are in good agreement

with the GJ relations. The overall scale factor is ybφ0ζ0 ! mb/mt ! (0.011) at the GUT scale,

assuming the top Yukawa coupling is 1. For the up type quarks, the mass matrix can be written

as,

Mu =





ia 1−i
2 a 0

1−i
2 a a + h k

0 k 1




ytvu , (24)

and with the choice of k ≡ y′ψ0ζ0 = −0.032, h ≡ ψ2
0 = 0.0053 and g ≡ φ′30 = −2.25 × 10−5, the

ratio among the three up type quarks is given by,

mu : mc : mt = 0.0000252 : 0.005 : 1.00 , (25)

which is consistent with the observed values shown in Eq. 20. The absolute values of the CKM

matrix elements are given by,

|VCKM| =





0.976 0.217 0.00778

0.216 0.975 0.040

0.015 0.0378 0.999




. (26)

Except for the element Vub, which is slightly higher than the current experimental upper bound

of ∼ 0.005, all other elements are in good agreement with current data. This discrepancy can be

alleviated by allowing additional operators to be present in the model. It can also be improved by

having complex parameters, with which realistic CP violation measures in the quark sector could

also arise. We leave these possibilities for further investigation. The diagonalization matrix for the

charged leptons is,

Ve,L =





−0.996 + 0.052i −0.0516 + 0.0581i (6.35− 6.36i)× 10−5

0.0578 + 0.0520i −0.995 + 0.0581i 0.00108− 0.0000636i

7.24× 10−6 0.00109 0.999




. (27)

This leads to small deviation to the tri-bimaximal mixing pattern as discussed above, leading to

the following leptonic mixing matrix,

|UMNS| = |V †
e,LUTBM| =





0.838 0.545 0.0550

0.364 0.608 0.706

0.409 0.578 0.706




, (28)

which gives sin2 θatm = 1, tan2 θ# = 0.424 and |Ue3| = 0.055. Note that the total number of

parameters in our model is seven in the charged fermion sectors and two in the neutrino sector.
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charged fermion 
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These predictions are consistent with the observed values given in Eq. 20 and are in good agreement

with the GJ relations. The overall scale factor is ybφ0ζ0 ! mb/mt ! (0.011) at the GUT scale,

assuming the top Yukawa coupling is 1. For the up type quarks, the mass matrix can be written

as,

Mu =





ig 1−i
2 g 0

1−i
2 g g + h k

0 k 1




ytvu , (24)

and with the choice of k ≡ y′ψ0ζ0 = −0.032, h ≡ ψ2
0 = 0.0053 and g ≡ φ′30 = −2.25 × 10−5, the

ratio among the three up type quarks is given by,

mu : mc : mt = 0.0000252 : 0.005 : 1.00 , (25)

which is consistent with the observed values shown in Eq. 20. The absolute values of the CKM

matrix elements are given by,

|VCKM| =





0.976 0.217 0.00778

0.216 0.975 0.040

0.015 0.0378 0.999




. (26)

Except for the element Vub, which is slightly higher than the current experimental upper bound

of ∼ 0.005, all other elements are in good agreement with current data. This discrepancy can be

alleviated by allowing additional operators to be present in the model. It can also be improved by

having complex parameters, with which realistic CP violation measures in the quark sector could

also arise. We leave these possibilities for further investigation. The diagonalization matrix for the

charged leptons is,

Ve,L =





−0.996 + 0.052i −0.0516 + 0.0581i (6.35− 6.36i)× 10−5

0.0578 + 0.0520i −0.995 + 0.0581i 0.00108− 0.0000636i

7.24× 10−6 0.00109 0.999




. (27)

This leads to small deviation to the tri-bimaximal mixing pattern as discussed above, leading to

the following leptonic mixing matrix,

|UMNS| = |V †
e,LUTBM| =





0.838 0.545 0.0550

0.364 0.608 0.706

0.409 0.578 0.706




, (28)

which gives sin2 θatm = 1, tan2 θ# = 0.424 and |Ue3| = 0.055. Note that the total number of

parameters in our model is seven in the charged fermion sectors and two in the neutrino sector.

9

UMNS = V †
e,LUTBM =




1 −θc/3 ∗

θc/3 1 ∗
∗ ∗ 1
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(1)

UMNS =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13








c12 s12 0
−s12 c12 0

0 0 1





S2 = T 3 = (ST )3 = 1

S2 = R, T 3 = 1, (ST )3 = 1, R2 = 1

Z3 : GT

Z4 : GTST2

u = −1.87× 10−2, ξ0 = 1.15× 10−2, Mx ∼ 1014 GeV

1

2  parameters in 
neutrino sector

cos (beta)= 2/3 :  best fit values



Conclusions

• SU(5) x (d)T symmetry: tri-bimaximal lepton mixing & 
realistic CKM matrix

• Z12 x Z12’ symmetry: only 9 operators present (only 9 
parameters in Yukawa sector)

★ forbid proton decay

★ likely linked to orbifold compactification

• dynamical origin of mass hierarchy (including mb vs mt)

• interesting sum rules:

angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM − eiβθc/3 , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0.

With θc ! 0.22 and (φ0ψ′
0) being real, the factor eiβ turns out to be very close to 1. This

deviation thus naturally accounts for the difference between the prediction of the TBM matrix,

which gives tan2 θ!,TBM = 1/2, and the experimental best fit value, tan2 θ!,exp = 0.429. The

off diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

θ13 ! θc/3
√

2 ∼ 0.05. We note that a more precise measurement of tan θ! will pin down the

phase of φ0ψ′
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ε2u : εu : 1, md : ms : mb = ε2d : εd : 1 , (20)

where εu ! (1/200) = 0.005 and εd ! (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvdφ0ζ0
=





0 (1 + i)b 0

−(1− i)b c 0

b b 1




,

Me

ybvdφ0ζ0
=





0 −(1− i)b b

(1 + i)b −3c b

0 0 1




,

(21)

and with the choice of b ≡ φ0ψ′
0/ζ0 = 0.00789 and c ≡ ψ0N0/ζ0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : mτ = 0.000870 : 0.143 : 1.00 . (23)
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could give right amount to account for 
discrepancy bt exp best fit value

and TBM prediction

relative phase α depends upon the coupling constants. Even though θd
12 is of the size of the Cabibbo

angle, the corresponding mixing angle in the charged lepton sector, θe
12, is much suppressed due to

the GJ relations,

θe
12 !

√
me

mµ
! 1

3

√
md

ms
∼ 1

3
θc . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 θ! ! tan2 θ!,TBM −
1
2
θc cos β , (19)

where the relative phase β is determined by the strengths and phases of the VEV’s, φ0 and ψ′
0. Such

a relation was also found in a model based on Pati-Salam gauge group [10]. This deviation could

account for the difference between the prediction of the TBM matrix, which gives tan2 θ!,TBM =

1/2, and the experimental best fit value, tan2 θ!,exp = 0.429, if cos β ! 2/3 (with θc ! 0.22). The

off-diagonal matrix elements in Me also generate a non-zero value for the neutrino mixing angle
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